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Abstract
Over the past 2 decades, many different geometric models were created for beta barrels, including,

but not limited to: cylinders, 1-sheeted hyperboloids, twisted hyperboloids, catenoids, and so forth.

We are proponents of an elastic surface model for beta-barrels, which includes the minimal surface

model as a particular case, but is a lot more comprehensive. Beta barrel models are obtained as

numerical solutions of a boundary value problem, using the COMSOL Multiphysics Modeling Soft-

ware. We have compared them against the best fitting statistical models, with positive results. The

geometry of each individual beta barrel, as a rotational elastic surface, is determined by the ratio

between the exterior diameter and the height. Through our COMSOL computational modeling, we

created a rather large variety of generalized Willmore surfaces that may represent models for beta

barrels. The catenoid is just a particular solution among all these shapes.
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1 | INTRODUCTION

In biochemistry, biophysics and mathematical biology, secondary struc-

tures represent the main types of local surfaces (shapes) corresponding

to biopolymers (eg, proteins and nucleic acids). On a finer level, the

atomic positions in 3D space are said to form the tertiary structure.

The most common secondary structures are the alpha helices. The

second most-common are the beta sheets and beta barrels. A beta bar-

rel is a collection of beta-sheets that twist and coil in a shape that can

be described as a smooth surface of revolution which resembles a bar-

rel. In this structure, the first strand is hydrogen bonded to the last.

Beta-strands in beta-barrels are typically arranged in an antiparallel

fashion. Barrel structures are commonly found in proteins that span

cell membranes and in proteins that bind hydrophobic ligands in the

barrel center.

A beta barrel represents an ideal smooth surface described by the

beta strands. The most common type, the so called up-and-down bar-

rel, is considered to be a surface of revolution that is topologically

equivalent to a cylinder. Up-and-down barrels consist of a series of

beta strands, each of which is hydrogen-bonded to the strands immedi-

ately before and after it in the primary sequence. Beta-strands in

beta-barrels are typically arranged in an antiparallel fashion, but some

proteins, such as the green fluorescent protein (GFP), are characterized

by beta barrels formed with both parallel and antiparallel beta strands.

Beta barrel structures (named for their resemblance to the barrels that

hold liquids) are commonly found in porins and other proteins that

span cell membranes, and in proteins that bind hydrophobic ligands in

the barrel center, as in lipocalins.

In many cases, the strands contain alternating polar and hydropho-

bic amino acids, so that the hydrophobic residues are oriented toward

the interior of the barrel to form a hydrophobic core and the polar resi-

dues are oriented toward the outside of the barrel on the solvent-

exposed surface. Porins and other membrane proteins containing beta

barrels reverse this pattern, with hydrophobic residues oriented toward

the exterior where they contact the surrounding lipids, and hydrophilic

residues oriented toward the interior pore.

The polyhedral, discrete skeleton of beta-barrels can be classified

in terms of 2 integer parameters: the number of strands in the beta-

sheet, n, and the “shear number”, S, a measure of the stagger of the

strands in the beta-sheet. These 2 parameters (n and S) are related to

the inclination angle of the beta strands relative to the axis of the bar-

rel. To us, the number of strands and the sheer number are irrelevant.

We consider the best fitting smooth surface for this polyhedral molecu-

lar skeleton, to be what we refer to as beta barrel.

Several models were proposed for beta sheets and beta barrels.

Among them, we recall, in chronological order: the twisted 1-sheeted
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hyperboloid (see,1 1984), followed by the usual 1-sheeted hyperboloid

(see,2 1988), and much later, the catenoid as a best-fit (see,3 2005).

Over time, all the above-mentioned surfaces have been tried as “best

models” for beta barrels. We became aware of the fact that none of

these models is satisfactory. A few authors presented arguments based

on experimental data that the beta sheet structures in proteins are the

result of the tendency to minimize surface areas, and should therefore

be very close to minimal surfaces. For a large diversity of aminoacids,

the mean curvature was experimentally measured and it turned out to

be close to a specific constant, which is small in absolute value, but not

negligible. A decade ago, Koh and Kim3 have proposed the model that

all beta-sheet structures “are almost minimal surfaces”. By this,

they meant that their mean curvatures are very small, but the term

almost-minimal has no mathematical foundation.

We would like to make it clear, however, that while the mean cur-

vature could be small in absolute value for some beta barrels, it may be

far away from zero for others, and it may also vary significantly from a

point to another of the same barrel. Koh and Kim stated: “The fact that

the commonly used models for some beta-sheet surfaces (ie, the

hyperboloid and strophoid) have very small mean curvatures (under

0.05) supports our model”. For example, for the following enzymes:

glycolate-oxidase, taka-amylase, and aldolase, the mean curvature H,

measured experimentally for beta-sheets, is approximately H50.039

(for each of them). In reference,4 the authors presented the mean cur-

vature values for several aminoacids, and are depicted in Table 1. On

the other hand, the mean curvature values may change significantly

from a type of protein to another.

Moving in a new direction, that can give us a better view, we are

proponents of an “elastic surface model for beta-barrels”, which includes

the minimal surface model as a particular case, but is a lot more compre-

hensive. Such a model has already been proposed in part by5 for beta

sheets with antiparallel strands. We study beta barrels as elastic surfa-

ces, and obtain them as numerical solutions of a boundary value prob-

lem—while comparing them against the best fitting statistical models. It

is important to remark that catenoids represent the only minimal surfa-

ces of revolution, and in particular, they are Willmore-type surfaces

(elastic surfaces) [14]. As such, they are included in our model. Through

our COMSOL computational modeling, we created a rather large variety

ofWillmore-type surfaces that may represent models for beta barrels.

As a relevant real-world application of high relevance and actuality,

observe the model of the beta barrel of GFP in Figure 1 and remark its

unduloidal shape (Delaunay-type unduloid). Martin Chalfie, Osamu Shimo-

mura, and Roger Y. Tsien were awarded the 2008 Nobel Prize in Chemis-

try for their discovery and development of the GFP model. On the other

hand, Helfrich [10] has introduced the curvature energy per unit area, cor-

responding to bio-membranes (lipid bilayers) as:

Elb5
ð

M

kcð2H1c0Þ21�kK dS; (1)

where kc and �k represent specific rigidity constants, H and K are the mean

and Gaussian curvatures of the surfaceM, respectively, while c0 is the so-

called spontaneous curvature.

We would like to mention that this type of generalized bending

energy (at times referred to as Helfrich-type energy) has been

considered for other types of elastic membranes in biophysics, as well,

e.g. [6], [7], [11], [12]. Following the model proposed by Helfrich, two

other scientists, S. Choe and X.S. Sun, proposed a similar elastic model

for anti-parallel beta sheets, which was published in 2007 in the Bio-

physical Journal5—based on a bending energy, namely:

Elb5
ð

M

½k ðH1c0Þ21�kK� dS; (2)

where dS is the infinitesimal area, c0 is the “preferred curvature of the

surface” as they call it, and k and ~k are bending moduli that “relate the

energy change with changes in mean and Gaussian curvatures”.

Our elastic surface model for beta barrels is similar to this model,

with the exception of an added constant term that comes from the

superficial tension combined with a stress tensor, and with the

additional assumption that c0 is negligible. We therefore write

Eb5
ð

M

½kH21~kK1l� dS; (3)

TABLE 1 Mean curvature values of beta barrels for several types
of proteins (from reference4)

Protein

Average
of mean
curvature

SD of mean
curvature

Triose phosphate isomerase 0.040 0.021

Taka-amylase 0.035 0.007

Glycolate-oxidase 0.035 0.007

Trimethanolamine
dehydrogenase

0.037 0.013

Cytochrome b2 0.033 0.005

Aldolase 0.035 0.112

FIGURE 1 Beta Barrel of the GFP (from jelly fish) by scientists
Martin Chalfie, Osamu Shimomura and Roger Tsien—Nobel prize
recipients (courtesy of the American Association of Clinical
Chemistry) [Color figure can be viewed at wileyonlinelibrary.com]

36 | TODA ET AL.

http://wileyonlinelibrary.com


and call this type of energy generalized Willmore energy (GW energy),

or generalized bending energy. The Euler-Lagrange equation corre-

sponding to the GW energy functional can be written as the following

(GWE):

DgðHÞ12HðH22K2�Þ50; (4)

where �5l=k and Dg represents the Laplace-Beltrami operator corre-

sponding to the metric g that is naturally induced by the surface param-

eterization. We are interested in rotational surfaces that represent

minimizers of GW energy (that is, solutions to its corresponding Euler-

Lagrange equation described above). These represent our general mod-

els for beta barrels. Hereby, we are recalling the basics of a computa-

tional study that we have performed on this type of surfaces, in.7

Consider a Cartesian system of axes of coordinates x, y, z in R3 and the

circles C1, C2 of the same radius a, centered at ð21;0;0Þ and (1, 0, 0),

situated in planes orthogonal to the x axis. Consider all regular surfaces

of revolution of annular-type with boundary C1 [ C2. Assume that

among all these surfaces, there exists at least a surface M minimizing

the GWE. This surface in assumed embedded in R3 and admitting the

representation

M : 5fx; uðxÞcosu; uðxÞsinug : x 2 ½21;1�; u 2 ½0;2p�;

where u 2 C4ð½21;1�; ð0;1ÞÞ represents the profile function. Then,

the surface M is a solution of the following boundary value problem:

DH12HðH22K2�Þ50 onM; where �5
l
k

(5)

H50 on oM5C1 [ C2; (6)

uð61Þ5a: (7)

In these assumptions, there exists a positive value a� (a� � 1:5089)

that is independent from the value of �, such that

a If 0<a<a�, then GWE admits NO minimal solution, that is, any

solution satisfies: H50 on oM and H 6¼ 0 on M n ðoMÞ.

FIGURE 2 Solutions to our boundary value problem, as H(x), and corresponding profile curves u(x) for different a values and for fixed
� value [Color figure can be viewed at wileyonlinelibrary.com]
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b If a5a�, then GWE admits exactly 1 minimal solution (a unique

catenoid that exclusively depends on a�).

c If a>a�, then GWE admits exactly 2 minimal solutions (2 catenoids

whose equations exclusively depend on a).

The proof is straight-forward, as based on elementary arguments, and

can be found in.7 Such a Dirichlet boundary value problem was posed

for the Willmore equation in [9].

Further, we have analyzed the a-family of solutions that corre-

sponds to various fixed values of �. We were able to construct corre-

sponding families of solutions using COMSOL Multiplysics, see fig. 2

and 3. On the other hand, of course, each solution to our boundary

value problem (and in particular each catenoidal solution) can actually

be represented in COMSOL, if we choose the unique value a appropri-

ately, and deal with the solution branching (in order to graph all corre-

sponding solutions u if that is the case).

Remark the shapes obtained for the profile u(x) as solutions to the

boundary value problem associated to GWE, in all the figures pre-

sented in this article: they resemble either a catenary, or an undulary—

thus generating catenoidal and unduloidal GW surfaces of revolution.

Due to the physical nature of our boundary value problem, the nodoi-

dal solutions are absent, but nodoidal solutions would certainly be pres-

ent for other types of boundary value conditions of the GWE.

Following our analysis, for each and every value of a that is higher than

a�, there exist 3 distinct solutions, namely 2 catenoidal profiles and a

non-minimal solution—which could be unstable (that is, not a local mini-

mizer of the energy). Remark that catenoids represent global minimiz-

ers, as Deckelnick and Grunau8 showed in a recent article. For the

classical Willmore case �50, authors proved that the non-minimal

solution is contained between the 2 catenoids, and it is unstable. Our

numerical analysis on the stability of the solutions to the GWE is in

progress (Figures 2 and 3).

FIGURE 3 Solutions to our boundary value problem, as H(x), and corresponding profile curves u(x) for different a values and for fixed � value
[Color figure can be viewed at wileyonlinelibrary.com]
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Beta barrels are hereby represented as solutions of the boundary

value problem of the GW equation, GWE. Let D represent the “exterior

diameter” of the beta barrel, which is defined as the diameter of the

end-circles (what we call the imaginary top and bottom of the beta bar-

rel). Let h represent the distance between these two circles, which is

informally referred as the height of the beta barrel. Considering the

mathematical model of the beta barrel (solution of our boundary value

problems), its corresponding height will be 2 (distance between 21 and

1 on the x axis). Correspondingly, the diameter of the “bottom and top

circles” will be 2a. Therefore, the meaning of the a parameter from the

mathematical model is that of the ratio between diameter and height,

namely D/h, of the real-life beta barrel.

Elasticity theory provides enough reasons for the validity of our

computational PDE model. On the other hand, we decided to

strengthen our arguments by making an unbiased comparison between

our computational model (solution of the boundary value problem) and

the statistical models that correspond to protein databases.

2 | MATERIALS AND METHODS

2.1 | Beta barrel structure dataset from GFP class

To test the performance of the elastic surface model, we used the GFP

Ca coordinates dataset from Protein Data Bank. Out of the 54 proteins,

we excluded 10 with more than 1 domain, and extracted the structure

information using Dictionary of Protein Secondary Structure files. We

considered only “E” segments that form intradomain b-ladders as

b-strands.

2.2 | Least square estimation using 3 models

We used least square estimation (LSE) to compare the elastic surface

model with 2 other models: catenoid and cylinder. In Cartesian system,

the coordinates of a catenoid (x, y, z) need to satisfy the following

equations:

r5a cosh
z
a

� �

x5r cos ð2pfÞ
y5 rsin ð2pfÞ

8>>><
>>>:

9>>>=
>>>;

We used 211 equally spaced a values from 0.4 to 2.5. For each a

value, we generated 300 equally spaced points from 21 to11 for the

variable z, and 100 points from 0 to 1 for f. Therefore, we obtained

30,000 points for each catenoid with a different a value. The diameter/

height ratio a cosh 1
a

� �
ranges from 1.5 to 2.7. In Cartesian system, the

coordinates of a cylinder (x, y, z) need to satisfy the following

equations:

r is a constant for given z

x5r cos ð2fpÞ
y5r sin ð2fpÞ

8>><
>>:

9>>=
>>;

For the variable r, we used 100 equally spaced points, namely

from from 0.7 to 1.7. For each r value, we generated 300 equally

spaced points from 21 to11 for z and, respectively, 100 points

from 0 to 1 for f. Therefore, we get 30, 000 points for each cylinder

with a different r value. The diameter/height ratio r ranges from 0.7

to 1.7. For the elastic surface model, we used 89 equally spaced �

values from 0 to 0.88, and 48 equally spaced diameter/height values

a from 0.7 to 1.17. For each of � and a combinations, we generated

300 equally spaced points from 21 to11 for z, and 100 points from

0 to 1 for f, respectively. Therefore, by using COMSOL Multiplysics,

we obtained 30,000 points for each elastic surface, with different �

and a values.

The procedure to get the LSE for the 3 models can be described as

follows:

1. S denotes one simulated dataset. D denotes the Ca coordinates

data for a certain protein. Denote n as the number of points in

dataset D.

2. Randomly select n points from S, denoted as s. Denote d5D.

3. Run Procrustes analysis for optimal modeling, up to translating,

rotating, and scaling d to superimpose to s. d is updated as the

transformed data. The scale value is recorded.

4. Search in dataset S to find n points closest to each of the points in

d, denoted as s.

5. Repeat steps steps 3) and 4) 10,000 times, and record d with

the least sum of squares for error (SSE) from the subset s in

the iteration, denoted as d0 and s0 with series of scale values

as c1; c2; . . . ; ct.

6. Denote d15d0=ðc1c2 � � � ctÞ as the transformed real data in the

original scale. Apply the same translating, rotating, and scaling

procedure on S as the one to optimally superimpose s0 to d1.

The result is denoted as S1.

7. Apply the Iterative Closest Point method to match S1 to d1, result-

ing in rotated data S2. Then get correspondences in S2 using near-

est neighbor search, denoted as s2.

8. Calculate SSE between s2 and d1.

For each model, we run the above procedure to find the best parameter

value to achieve the smallest SSE. The results are shown in the following

table.

3 | RESULTS AND DISCUSSION

3.1 | Statistical model comparison with the

computational models in COMSOL

We can see from Table 2 that almost all of the roots of mean squares

for error (RMSE) are smaller than 3, by fitting the 3 models, except pro-

teins 1f09 and 1qyf. It turns out that the 3D structures of these 2 pro-

teins are quite different from the others. Further investigation is

needed in order to fit the two proteins using other more proper mod-

els. For all the other proteins, the elastic surface model achieves its

smallest RMSE when the estimated diameter/height ratio ranges

between 0.83 and 0.89. The cylindrical beta barrel model corresponds
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TABLE 2 LSE results for GFP by using 3 models

Catenoid Cylinder Elastic surface

a diam./ht. RMSE diam./ht. RMSE epsilon diam./ht. RMSE

1bfp 0.76 1.518 2.582 0.73 1.371 0.67 0.85 1.318

1c4f 0.8 1.511 2.569 0.74 1.354 0.68 0.86 1.306

1cv7 0.81 1.510 2.496 0.77 1.373 0.69 0.88 1.323

1ema 0.77 1.516 2.539 0.71 1.356 0.64 0.85 1.296

1emb 0.76 1.518 2.578 0.73 1.375 0.67 0.86 1.318

1emf 0.79 1.512 2.527 0.72 1.359 0.63 0.85 1.293

1emg 0.79 1.512 2.549 0.72 1.351 0.66 0.85 1.300

1emk 0.76 1.518 2.549 0.7 1.339 0.64 0.84 1.295

1eml 0.8 1.511 2.560 0.72 1.373 0.62 0.85 1.327

1emm 0.76 1.518 2.540 0.72 1.380 0.66 0.87 1.322

1f0b 0.76 1.518 2.575 0.72 1.369 0.71 0.88 1.316

1f09 0.4 2.453 5.128 0.56 4.564 0.02 0.7 4.566

1huy 0.75 1.521 2.556 0.74 1.411 0.63 0.88 1.345

1jby 0.77 1.516 2.590 0.74 1.361 0.67 0.87 1.321

1jbz 0.78 1.514 2.506 0.74 1.362 0.63 0.89 1.277

1kyp 0.77 1.516 2.566 0.71 1.404 0.66 0.87 1.348

1kyr 0.76 1.518 2.558 0.71 1.394 0.65 0.86 1.334

1kys 0.8 1.511 2.560 0.76 1.376 0.7 0.85 1.323

1mem 0.75 1.521 2.532 0.75 1.361 0.65 0.86 1.292

1myw 0.69 1.551 2.582 0.72 1.402 0.64 0.86 1.349

1oxd 0.74 1.525 2.598 0.72 1.387 0.68 0.86 1.337

1oxe 0.74 1.525 2.565 0.71 1.377 0.7 0.87 1.326

1oxf 0.75 1.521 2.587 0.74 1.401 0.7 0.86 1.350

1q4a 0.78 1.514 2.546 0.74 1.370 0.66 0.87 1.316

1q4b 0.75 1.521 2.571 0.72 1.372 0.64 0.88 1.322

1q4c 0.75 1.521 2.553 0.73 1.377 0.66 0.88 1.322

1q4d 0.78 1.514 2.568 0.72 1.371 0.63 0.85 1.321

1q4e 0.76 1.518 2.549 0.74 1.380 0.66 0.86 1.332

1q73 0.72 1.534 2.554 0.73 1.371 0.65 0.86 1.324

1qxt 0.78 1.514 2.524 0.74 1.344 0.67 0.86 1.281

1qy3 0.73 1.529 2.569 0.74 1.369 0.68 0.86 1.309

1qyf 0.4 2.453 5.108 0.51 4.022 0 0.7 4.124

1qyo 0.79 1.512 2.554 0.76 1.419 0.68 0.86 1.350

1qyq 0.78 1.514 2.526 0.7 1.412 0.66 0.87 1.342

1rm9 0.78 1.514 2.513 0.74 1.406 0.63 0.88 1.323

1rmm 0.77 1.516 2.536 0.72 1.387 0.67 0.87 1.318

1rmo 0.74 1.525 2.543 0.73 1.388 0.65 0.86 1.326

1rmp 0.74 1.525 2.538 0.74 1.372 0.63 0.88 1.298

(Continues)
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to a slightly higher RMSE, and similar diameter/height ratios. The cate-

noidal beta barrel model corresponds to a much higher RMSE and very

different estimates of diameter/height ratios.

The “practical reason” for the much better fit of the elastic

unduloidal-type model (when compared with its catenoidal counter-

part) is the following: On one hand the GFP structure has a small

diameter/height ratio, and on the other hand, while both cylinder

model and elastic model can fit structures with various diameter/height

ratios, the catenoidal model can only allow that ratio to be greater than

(or equal to) the value a�51:5089.

The cylindrical model is close enough to the unduloidal-type elastic

surface, and definitely more appropriate/accurate than the catenoid.

We should not forget that, for the case when c0 is not negligible, the

GWE equation has H5 c0 as a stable solution. Therefore, the constant

mean curvature (CMC non-zero) model may include circular cylinders,

as well as true CMC unduloids. Our elastic model, together with the

statistical analysis, now make it completely clear why the GFP protein

model obtained in 2008 by Chalfie, Shimomura and Tsien possesses

neither a catenoidal shape, nor a round cylindrical one, but an unduloi-

dal one (see Figure 4). The shape of the profile function u of the beta

barrel is always determined by the ratio between the end-circle diame-

ter and height (which is a). To complete the discussion, we also studied

and modeled a protein example 1cka with larger diameter/height ratio.

The results in Table 3 show that because the diameter/height ratio is

larger for protein 1cka, catenoid model can fit better than cylinder and

elastic surface model.

4 | CONCLUSION

Our elastic surface model for beta barrels proves itself to be more

appropriate than the individual models that were historically used. Phys-

ical arguments led us to beta barrel models as solutions to a boundary

value problem associated to a general Willmore equation. In addition,

our elastic surface model satisfies the requirements of the statistical

analysis, as a much better fit than previous models. This is a fortunate

case, in which numerical solutions obtained via COMSOL Multiphysics

(based on finite element methods) have been tested via statistical analy-

sis, and the results were highly in favor of the elastic model.
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